
Sub-seasonal to Seasonal (S2S) predictions of the Asian 
summer monsoon: Current status and future directions 

Yuhei Takaya*, Hong-Li Ren, Frederic Vitart and Andrew W. Robertson 

 
*Japan Meteorological Agency, Meteorological Research Institute 

Seventh WMO International Workshop on Monsoons (IWM-7) 

22-26 March 2022  



• Data archives for the sub-seasonal to seasonal (S2S) prediction 
studies 

• Performance of S2S prediction systems: current status and its 
evolution 
 

Seasonal prediction 
• Dominant drivers for the ASM variability and representation of their 

responses in the models 

  Subseasonal prediction 
• Prediction skill of Boreal Summer Intraseasonal Oscillation and Indian 

rainfall 

• Future challenges 

• Summary 
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Data archives for the sub-seasonal to seasonal 
prediction studies 
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WWRP/WCRP Sub-seasonal to Seasonal Prediction Project (S2S) 

Vitart et al. 2017 BAMS 

12 models: BoM, CMA, CNR-ISAC, CNRM (Meteo France), ECCC, ECMWF, HMCR, IAP-CAS, 
JMA, KMA, NCEP, UKMO 

http://www.s2sprediction.net/ 

 

Data archives for the sub-seasonal to seasonal prediction studies 

The Subseasonal Experiment (SubX) 

Pegion et al. 2019 BAMS 

7 models: NCEP-CFSv2, EMC-GEFS, ECCC-GEM, GMAO-GEOS, NAVY-ESPC, RSMAS-
CCSM4, ESRL-FIM 

http://cola.gmu.edu/subx/ 

Sub-seasonal prediction 
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http://www.s2sprediction.net/
http://cola.gmu.edu/subx/


Seasonal range prediction 

WCRP CHFP, NMME, C3S, ENSEMBLES, APCC MME, DEMETER 

 

Data archives for the sub-seasonal to seasonal prediction studies 

WCRP Climate-system Historical Forecast Project (CHFP) 

Tompkins et al. 2017 BAMS 

https://www.wcrp-climate.org/wgsip-chfp  

North American Multi-Model Ensemble (NMME)  

Kirtman et al. 2014 BAMS 

https://www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model 

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/ 

 

 Copernicus Climate Change Service (C3S) 

Models: CMCC, DWD, ECCC, ECMWF, JMA, Met Office, Meteo-France, NCEP 

https://climate.copernicus.eu/seasonal-forecasts 
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Performance of seasonal prediction systems:  
current status and its evolution 

Numerous studies have investigated model performance in representing the ASM. 
(Kang et al. 2002, Rajeevan et al. 2012, Sperber et al. 2013…) 
This study (as a part of WGSIP project) updates the current status and address its evolution. 
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CHFP C3S (1993-2016) 

[mm/d] 

(1993-2016) (1979-2009) 

cf. Kang et al. (2002), Sperber et al. (2013),  
Rejeevan et al. (2012)  

  7 Precipitation climatology (JJA) in seasonal prediction models  



C3S MME(1993-2016) vs GPCP2.3 

C3S (and CMIP) models share a common bias pattern 
for precipitation.   
 
• Excessive rainfall over the tropical western North 

Pacific and North Indian Ocean 
• Deficient rainfall around coastal East Asia (Meiyu 

rainfall) and South Asia. 

cf. Kang et al. (2002), Sperber et al. (2013),  
     Rejeevan et al. (2012), Choudhury et al. (2021) 
 

  8 Precipitation bias (JJA) in seasonal prediction models  

* Please note that GPCP and CMAP analyses present  
a significant difference. 

[mm/d] 
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CHFP C3S 

The latest models (C3S) have higher ability to reproduce the climatological pattern of observed  
precipitation compared with the models a decade ago (CHFP). Almost all of the C3S models have  
higher pattern correlations than the median of the CHFP models.  

  9 Pattern correlation of precipitation climatology (JJA) 40E-180, 40N-10S 
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C3S (latest) 

CHFP (decade ago) 

Almost all the latest models have higher ability to reproduce the climatological pattern of  
observed precipitation compared with the previous models of each center. Pattern correlations  
of the climatological precipitation over the ASM region exceed 0.8 in some models. 

  10 A decade of progress (added value of C3S over CHFP):  
Pattern correlation of precipitation climatology (JJA, 40E-180, 40N-10S) 
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CHFP C3S 

The dependence of skill scores on ensemble size makes it difficult to compare the skill of different systems. 
Therefore, here the estimated correlation skill of infinite member ensemble (Murphy, 1988) is shown. 
* MME(C3S) presents the correlation skill of the multi-model ensemble mean (not 𝑪∞). 
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MME (C3S) 

Pointwise temporal correlation skill for JJA precipitation  
(Estimated skill with infinite members, 𝑪∞) 
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The latest models (C3S) have higher ability to predict  the interannual variability of precipitation  
over the ASM region than the models a decade ago (CHFP). Almost all of the C3S models have  
higher averaged correlation than the median of the CHFP models.  

* Negative correlations were set to zero when the area averages were computed. 

  12 A decade of progress: Area averages of temporal correlations (𝑪∞)  
for JJA precipitation (40E-180, 40N-10S)* 
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Almost all the latest models have higher ability to predict the interannual variability of  
JJA precipitation than the previous models of each center. 

C3S (latest) 

CHFP (decade ago) 

  13 A decade of progress: Area averages of temporal correlations (𝑪∞)  
for JJA precipitation (40E-180, 40N-10S)* 
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CHFP (16 models) C3S (11 models, 1996-2016) 

Number of models that have expected correlation skills (𝐶∞) exceeding 0.3 

(Potentially) predictable regions:  
Tropical western North Pacific, Maritime Continent (Indonesia),  Arabian Sea,  
eastern and western Indian Ocean, Ganges region, south part of Indian subcontinent,  
Central China-Japan (Meiyu-Baiu region),  coastal regions of Indochina Peninsula 
 

# of models 

  14 Predictable regions of JJA precipitation 

* Please note that higher prediction skill can be obtained after area averaging.  



Dominant drivers for the ASM variability and representation of 
their responses in the model (seasonal prediction) 
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IPOC 

Dominant climate drivers and predictability sources for ASM 

Figure made by Y. Takaya, similarly to that presented in Meehl et al. 2020 

Week Day Month Season Year 

Initial value problem Boundary value problem 

Atmospheric synoptic 
variability 

Land (Soil moisture/snow) 

QBO 

ENSO 

IOD (EQUINOO) 

MJO/BSISO 

Global warming 

Atmospheric Rossby wave 
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The S2S predictability 
arises from multiple 
sources. 

* In the ESM prediction, most components are initialized, so all the phenomena are initial value problems, but here I show the slowly-varying 
phenomena as boundary value problems for the atmosphere following a traditional convention. 
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Dominant coherent variability of ASM 

Simultaneous and delayed influence of ENSO 

Heterogeneous correlation maps of SVD analysis for SST and precipitation in JJA 
colors: precipitation (CI: 0.2) 
contours: SST (CI: 0.2) 

ENSO mode IPOC mode 

SCF: 59.2 SCF: 16.3 

VAR  SST: 17.5%, PR: 20.5% VAR  SST: 10.7%, PR: 6.7% 

cf.  
Mishra et al. (2012) 
PNAS 
Wang et al. (2013) 
PNAS 
Wang et al. (2015)  
Clim. Dyn. 
Xie et al. (2016)  
AAS 
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Heterogeneous correlation maps of SVD analysis  
for SST (contours) and precipitation (colors) in JJA 

ENSO mode IPOC mode 

SCF: 59.2 
SCF: 16.3 

SVD analysis for JJAS precip. and SST 
(1900-2008) 

Dominant coherent variability of ASM 

A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall  
Vimal Mishra, Brian V. Smoliak, Dennis P. Lettenmaier, and John M. Wallace,  
Proc. Nat. Aca. Sci., Vol. 109, No. 19 Copyright(2012) 

Mishra et al. (2012) PNAS 

cf. Webster et al. 1998, Krshna Kumar et al. 2005, and many others  
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Heterogeneous correlation maps of SVD analysis  
for SST (contours) and precipitation (colors) in JJA 

ENSO mode IPOC mode 

SCF: 59.2 
SCF: 16.3 

Dominant coherent variability of ASM providing the predictability   19 

# of models 

Predictable regions 

The dominant coherent variability of the ASM gives rise to the seasonal predictability. 



ENSO mode (obs) 

color： precipitation  
contour: SST (CI:0.2 [K]) 

 

Results of SVD analysis for SST  
and precipitation in black box. 
heterogeneous regression maps 

Representation of the coherent variability modes 

SCF: 55.9 

SCF: 70.0 

SCF:63.8 

SCF: 76.8 

SCF:76.1 

SCF: 69.4 

SCF:77.2 

SCF:67.5 

SCF:67.3 

SCF:59.7 SCF: 68.5 SCF: 69.3 

All latest models capture overall ENSO influence on large scale precipitation.  
Some (not all) reasonably capture regional rainfall pattern (e.g., South Asia).   

cf. Krishna Kumar et al. (2005)  
failure of AGCM,  
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IPOC mode (obs) 

color： precipitation 
contour: SST (CI:0.2 [K]) 

 

Results of SVD analysis for SST  
and precipitation in black box. 
heterogeneous regression maps 

Representation of the coherent variability modes 

SCF: 20.0 

SCF: 14.4 

SCF:15.6 

SCF:12.2 

SCF:13.0 

SCF:19.2 

SCF:16.6 

SCF:20.4 

SCF:23.1 

SCF:28.7 SCF: 22.4 SCF: 20.6 

Representing IPOC mode seems to be more difficult than ENSO mode, but the majority of models represent 
the observed pattern. Some models present IOD-like pattern (presumably due to model bias).    
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*Precipitation prediction skill: Area averages of temporal correlation for JJA precipitation  
(40E-180, 40N-10S, estimated skill with 50 members) 

Pattern correlation of precipitation climatology (40E-180,40N-10S) 

Representation of precipitation climatology and prediction skill 

C3S 

CHFP 

A good relationship between the pattern correlation of  
precipitation climatology and precipitation prediction 
skill.   
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However, plots of the C3S models scatter.  
What do make the skill difference? 



*Precipitation prediction skill: Area averages of temporal correlation for JJA precipitation  
(40E-180, 40N-10S, estimated skill with infinite members). 
 The teleconnections are regressed patterns against NINO3.4 and IOB SSTs. 
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Pattern correlation of NINO3.4 teleconnection  Pattern correlation of IOB SST teleconnection  

Representation of teleconnections and prediction skill 

cf. Jain et al. (2019) Clim. Dyn. for Indian rainfall   
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The skill difference is attributable to the ability or lack thereof to represent the ENSO-rainfall teleconnection. 
 Improving representation of the coherent variability and teleconnections is a key for seasonal ASM prediction.  
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Dominant drivers for the ASM variability and representation of 
their responses in the model (subseasonal prediction) 
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IRI Real-Time Probabilistic Forecasts  

Precipitation Forecast issued Jul 23, 2021 (Week 3+4) 

http://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/ 

Issued every Friday in Real Time 

Based on 3 NOAA SubX models: CFSv2, GEFS, ESRL-FIM 

Calibrated using extended  logistic regression 

Forecast Probability of most-likely Tercile Category 

7-20 Aug 2021 

Observed percentile  

7-20 Aug 2021  

Hindcast Week 3+4 RPSS Skill 

Some positive skill over northern South Asia. 

The forecast on the left verified over parts of South 

and SE Asia 

Based on SubX 

Courtesy: Dr. Andrew Robertson 

S2S forecasts are now a reality. However, hindcast skill is still low,  
which emphasizes the need for future improvement.  



EOF modes of daily OLR (shadings; units: Wm−2) and 
zonal 850 hPa wind (vectors; units: ms−1) anomalies 
from ERA-Interim/NOAA during May-October for the 
12-year period of 1999–2010. 

BSISO is considered to be the dominant subseasonal 
variability that gives the subseasonal predictability. 
BSISO is more difficult to predict/simulate than MJO 
in winter.  

Jie et al. (2017) QJ 

Jie, W., Vitart, F., Wu, T. and Liu, X. (2017), 
Simulations of the Asian summer monsoon in the 
sub-seasonal to seasonal prediction project (S2S) 
database. Q.J.R. Meteorol. Soc., 143: 2282-2295. 
(CC BY 4.0)  

Bivariate Anomaly Correlation as a function of lead  
time for BSISO1 and BSISO2 between ERA-Interim  
and forecasts from S2S models during May-October 
 for the 12-year period 1999–2010 

  26 Boreal Summer Intraseasonal Oscillation (BSISO) in S2S models 



Subseasonal prediction skill of ASM is associated with BSISO skill 

A significant improvement of forecast skill scores with time was observed, especially in the last 5 years, 
possibly due to the increased horizontal resolution from 60 to 35 km. 

Forecast skill (ROC area) of precipitation 
over India in ECMWF model 
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Courtesy: Dr. Frederic Vitart 

Bivariate correlation of MJO indices 

Week 4 Week 4 



• Improving Inter-basin interaction and its influence on ASM 
• Slow/fast decaying ENSO 

• ENSO flavor (CP/EP-ENSO) 

• Model bias and IOD 

• Improving subseasonal prediction skill of BSISO and associated 
variability 

• Process-based understanding of model errors of the S2S  
prediction models 

• User-oriented forecast information  
(e.g., monsoon onset for agriculture) 

  28 Future challenges 

Further improvement of the S2S prediction skill is needed. 



• This study overviewed the performance of the seasonal prediction of the ASM using 
multi-model forecast archives. 

• Seasonal prediction models present steady progress of the predictive capability of the 
ASM over a decade. 

• The latest models reasonably represent the coherent atmosphere-ocean coupled 
variability of the ASM and its associated regional variability of precipitation. 

• Better representing the climatology of precipitation and ENSO-related teleconnection 
patterns of precipitation is fundamental for improving the seasonal prediction skill of  
the ASM. 

• Subseasonal prediction of ASM is challenging, however prediction skill of ISM rainfall 
has increased together with the improvement of BSISO skill.   

• The multi-model subseasonal prediction is now established. Further improvement of the 
prediction skill is needed. 

 

 

  29 Take-home messages 



Thank you for your attention. 
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